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The following scheme [l] Is considered In studying flame propagation. There 
la an Infinite rod In which the combustion process Is Initiated. The tem- 
perature distribution In the rod Is described by Equation 

3T ST 
-= 
at a2 i)x2 + F (T) 

with an Initial temperature distribution of the form shown In Flg.1. The 
function F(T) characterizing 
has the fomh ehown In Flg.2.- 
solution In the form of waves 

the heat release during the combustion process 
A solution of the form T(x - wt) , i.e. a 
traveling with velocity w , la sought. It Is 
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nroved that there exists a solution of the mentioned form. which Is unlaue. 
&%pondlng to the value of u) which characterizes the'flame propagai%oi 
velocity. A problem of analogous kind Is considered In [2], but It la 
assumed that 

F (0) = F (T*) = 0, F’ (0) = /3, F’ (T) < f3, T > 0 

It Is shown that the value of w may be evaluated by means of Formula 

o=2av/B 

However, It Is known that many exothermal processes are characterized by 
functions F(T) for which the condition F'(O)> F’(T) la not satisfied. In 
particular, explosive processes are characterized by functions F(T) which 
grow slowly for small T and very rapidly at high temperatures [3]. 

For-these processes a slow development ln the' Initial period (the period 
of Induction) and a very rapid develo ment after the attainment of a defl- 
nlte temperature (period of explosion P Is characteristic. It Is also known 
[3] that the diameter of the vessel has essential Influence on the rapidity 
of the process. It la natural to assume that the effect of the factors men- 
tioned should be analogous in flame propagation processes and an attempt has 
been made, along these lines, to find an explanation of the process of the 
r'apld growth of the flame velocity during the transition from combustion into 
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detonation, and also of the Influence of the vessel diameter on the pl?opa- 
gatlon xeloclty. However, a direct examination of the nonlinear problem Is 
difficult (especially ln a two-dimensional model). Hence, first the linear 
one-dimensional model of flame propagation without taking account of com- 
bustion of the material Is considered herein. 

It turns out that neglecting the combustion does not affect the limiting 
flame velocity. The obtained result 1s used to analyze nonlinear effects. 

However, the one-dimensional theory can not explain the influence of the 
vessel diameter on the propagation velocity. A theory taking account of the 
radial change In temperature Is considered in the second part, and this per- 
mits the Introduction of the concept of critical vessel diameter and the 
obtaining of a dependence of the propagation velocity on the coefficient of 
thermal diffuslvlty. 

1, Let US consider a semi-bounded pipe in which there Is a combustible 

substance at the temperature T-0. A temperature T = TO Is applied to 

the end x I 0 at a certain Instant. Then, considering the temperature to 

be constant at each cross section (one-dimensional theory), we have (as- 

F(T) - BT) 

aT 

at= a2 s + PT, T 1 tzo = 0, T 1 xzo = T, (1.1) 

Henceforth It Is convenient to consider the case when Tj,=, = T, for 
0 < t < to, 2’1 x=0 = 0 (t > to) Evidently this case Is closer to the real 

process of lnltlatlon of combustion. 

Let us put T = ues’, then 

au aa ak 
at” -zF’ u 1 t=o = 0, u 

The solution of this problem Is written as [4l 

u (5, t) = xTo s ePt 

2a v/n 
-- 

o r/P - z): exp 49 (t - r) az 

and hence 

T (5, t) = 
- 2% 

exp 4~2 (t - z) 
dz (1.2) 

Under the assumptions that 5" 1 x=o = T, (0 < t < to), T 1 x=0 =0 (t > to), 
we have from (1.2) for t > t, t* g(t-7, 

T k 1) = 2ax7y s o vtr _ T)s exP 4aa(tza T) dT 
Considering t large and t, small, we may put t - 7 - t and 

T (z, t) z zToto- 
cat -29 

2a I/x Jo- 
- e=p ,gaat (1.3) 

Let us interpret the flame propagation as the advancement of a certain 

constant temperature. Then we obtain a relationship connecting x and t 

xtoTo Pt -x* 
2a)/x VT 

----exP4a2t= const 
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It Is easy to see that this equation has an asymptotic solution of the 

form 5 = 2a v/Bt -Alnt+B (A, B = cod) 

as t+m. 

Hence, for 
dxldt = 2aI/p for t+ 00 

that Is, for the llmltlng flame propagation velocity, the same value has been 

obtained as ln [2]. Ttherefore, taking account of the combustion has no 

effect on the llmltlng flame propagation velocity. This fact Is easll: 

explained physically. Heat from distantly removed points does not aff.ct 

the propagation velocity, only the coefficient @ and the heat transfer to 

nearby points are of fundamental Importance 

P 

P 

Fig- 3 Pig. 4 Fig. 5 

Now, let the function F(T) have the form shown In Fig.3 (tan=,= B, , 

tan an= Pa. Pa' 81). Then the .feloclty cf advancement of the constant tem- 

perature T < T, should be calculated according to o1 =&ZvE, and the 

velocity of the advancement of the constant temperature - T > T, will be equal 

to CO~=2U~~z. Since the temperature at each point rises as t Increases 

and the higher temperatures progress more rapidly than the low ones, the 

higher temperatures will overtake the low. We have a situation analogous to 

the situation of the formation of a shock with a quite definite front. Hence, 

it shol>Ld be considered that If the function F(T) grows slowly, the flame 

front will be greatly extended and when F(T) Increases slowly for small T 

and rapidly for large T , the flame Is characterized by a quite definite 
front. Furthermore, If the break point on the curve of Fig.3 Is located far 

to the right and T,, Is significantly less than T,, then the propagation 

velocity In short pipes does not succeed In attaining the value UJ~ . The 

period of achieving the temperature T, In the flame may be called the per-lad 

of Induction. If T, Is small or TO Is close to T, , the period of lnduc- 

tlon Is slight. Evidently these considerations may be extended to the case 

of a function F(l') having more than one break point. 

Now, If F(T) Is a smooth curve such as is shown ln Flg.4, then by using 

a plecewlse linear approximation the preceding deductions may be extended to 

this case also and it may be considered that the propagation velocity may be 

calculated from Formula 

0 = 2a Jq, j3 = max F’(T) U.4) 
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If ~'(7') Increases without limit, taking account of combustion then 

becomes essential. But the portion of the curve corresponding to values of 

T for which combustion is essential, may be replaced by a tangent. Combin- 

ing all the> above, th? following conclusion may be made: If r(T) has the 

form shown In Flg.5, the flame propagation velocity may be calculated by 

using (1.4). 

For strongly-explosive materials the value of max p'(T) Is large, and 

conscqucntly, the final propagation velocity of the explosion process is 

large. The velocity may remain small during the period of induction. 

2. The expounded one-dimensional theory does not clarify the essential 

effect of the magnitude of the vessel diameter on the flame propagation 

veloclty([5] and other papers) which Is known from experiment. In order to 

elucidate this effect, let us consider the linearized theory of flame propa- 

gation In a semi-bounded cylinder taking into account the radlal temperature 

distribution. The Importance of taking account of radial heat propagation 

in the study of flame propagation has been noted In the book C61 (p.554). 

We have the problem 

aT 

at== 
,a PT 

( 3F+ -g+f$)+ PT 

T 1 t;_o = 0, T 1 ,.=R = 0, 2 I3c=o = T, (2.1) 

where I) is the pipe radius. 

We may also consider a boundary condition of the form (T:+ cT)R= 0 . 

Again setting 'J' = u&t, we obtain 

au aau 
at= 02 

( F+ag+++) 

UI!=O = 0, uI,,R =o, u I x==o = T,,e-Pt 
Let 24 = X (Z, t) p (r), then separating variables we obtain 

~+~~+h”p=o, f+.=R=O (2.2) 
ax razx 

at= a2 x- a2h2X, x 1 t-0 = 0, X 1 x_o = Toe-@ (2.3) 

The functions I,(A,r) , where I,(X) Is the zero order Bessel function 

of the first klnd and X, the roots of Equation I,(XA) = 0 , are SoIutlons 

of (2.2). Solutions of (2.3) are 

Xn(5, t) = XT, * exp [- a%,s(t -z)] 

s 

a 

2a V/h o I/Q - z)S exp ,,,,"_ r) 
dr 

Then 

T (z, F, t) = eBlzz (z, r’, t) = 

t exp [(B - azhna) (t - z)] - x2 

vet - v 
exp 4a* (t - T) 

dz 
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where the A, are calculated from the relationship 

Evidently the term corresponding to n I 1 Is of fundamental value for 

large r . Hence 

- x8 
exFJ 4a” (t - z) 

dz 

Here b Is the first root of Equation I,(X) = 0 . As in Section 1, 

let us consider that 

T 1 X=0 = To (0 < t d Qj T I x=o = 0 (t > to) 

Then 

T (5, r, t) z ~~1, (hlr) xtoTO_ e=p [(P - a%) 11 
20 drt $I¶ 

exp 5 
4a2t (2.4) 

It hence follows that If fi _ a‘Q,a< 0, then T + 0 as t Increases, 

I.e. In this case the process will not be propagated. If fl- aa A," > 0, 

then as follows from Section 1, the combustion process will be propagated 

with the velocity 
0 = 2a V/B--a%f (2.5) 

Since A,- b/i, this means that the process will be damped forR Q a&v/P 

and the combustion process being propagated at a velocity w > 0 will be 

Initiated for R > ab / I/p 

The maximum value of w as R Increases equals 2a’l/fi. 

Let F(T) have the form shown In Flg.3; then lf To < T,, R < abl JfL 
the flame rill not be propagated ln the pipe. If TO < T17 4 > ab I I% 
the flame first starts to be propagated at the low velocity 

then, when the temperature reaches the value T, , a sharp Increase In the 

flame velocity to the value 

occurs. 

Hence, the value R,= abj )fL becomes critical: for R <R, the 

flame Is not propagated; for R >R,the flame Is propagated at high velo- 

city. As has been remarked, If the period of lnductlon 1s large, the flame 

velocity ln short pipes will be low. If To> T, , then a regime if propaga- 

tion corresponding to the slope p. at once occurs. Hence, It can happen 

that If the diameter Is less than the critical (for a value er), i.e. 

A < ab / v/B,, but R > ab ! v6, then the combustion process does not 

occur for G< T, but starts to be propagated at high velocity for TO> Ti. 

Using reasoning analogous to that In Section 1, the case of a continuous 
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change In the slope of the tangent and taking account of combustion may be 

considered. The considerations expounded above may be used to elucidate the 

phenomenon of the transition of combustion Into detonation. 

Furthermore, if R >ri,= ab/ I/p%, then as has been remarked above, 

after a sufficient temperature has been achieved the flame starts to be pro- 

pagated at a velocity corresponding to the slope B _2- As follows from (2.5), 

the flame velocity tends to the quantity 2~vpa- fir. as R -tR, The 

maximum flame propagation velocity a,aax = 2a I/Bel and for R -f R,, it 
becomes 

Hence 

(2fJ) 

The dependence of the velocity w on the coeffic?ent of thermal dlffusl- 

vity,constructed according to (2.5), is presented In Flg.6. 

Fig. 6 

a increases the quantity of heat being dellv- 

ered through the pipe walls increases. The 

double role of the heat conductivity has been 

ncted in [73 (p. 288). It can turn out that 

taking account of the dependence of the flame 

propagation velocity on the coefficient of 

thermal diffusivlty will permit the elucidation 

of some peculiarities in flame propagation. 

The coefficient of thermal diffusivity depends on the temperature, but 

also changed during the reaction in connection with the change In the con- 

centration of the reacting materials. 

At the beginning, as a increases, the 

velocity w also increases to the maximum 

value a/x,, then decreases to zero. This fact 

Is completely explainable physically since as 

Let us assume that the coefficient of thermal diffusivlty depends on the 

temperature by increasing as the latter does. Then rapid cooling through 

the wall occurs on the portion where the temperature Is high, the flame is 

quenched on this portion. The layer lying in the forefront warms up slightly 

during this time and starts to burn only after a certain time (the period of 

induction) has elapsed, etc. and pulsating combustion [S and 73 occurs. 

The author is grateful to S.V. Fal'kovlch for useful dlscusslons. 
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