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The following scheme [1] 1s considered in studying flame propagation. There
is an infinite rod in which the combustion process is initiated. The tem-
perature distribution i1n the rod is described by Equation
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with an initial temperature distribution of the form shown in Fig.l. The
function p(T) characterizing the heat release during the combustion process
has the form shown in Fig.2. A solution of the form T{x — wt) , 1.e. a
solution in the form of waves traveling with veloclity w , 1s sought. It is
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proved that there exlsts a solutlon of the mentioned form, which is unique,
corresponding to the value of w which characterizes the flame propagation
velocity. A problem of analogous kind is considered in [2], but it is

assumed that
F@Q)=FT*=0, F’(O)={3, FT)KB, T>0

It 1s shown that the value of ¢ may be evaluated by means of Formula
0= 2a]/6

However, it is known that many exothermal processes are characterized by
functions p(T) for which the condition F’ (0) > F’'(I) 1s not satisfied. In
particular, explosive processes are characterized by functions m(7) which
grow slowly for small 7T and very rapidly at high temperatures [3].

For -these processes a slow development in th€ initial period (the period
of induction) and a very rapid development after the attainment of a defi-
nite temperature (period of explosion) is characteristic. It i1s also known
[3] that the diameter of the vessel has essential influence on the rapidity
of the process. It 1s natural to assume that the effect of the factors men-
tioned should be analogous in flame propagation processes and an attempt has
been made, along these lines, to find an explanation of the process of the
rapld growth of the flame veloclty during the transition from combustion into
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detonation, and also of the lnfluence of the vessel diameter on the propa-
gation velocity. However, a direct examination of the nonlinear problen is
difficult (especially in a two-dimensional model). Hence, first the linear
one~dimensional model of flame propagation without taking account of com-
bustion of the material 1s considered herein.

It turns out that neglecting the combustion does not affect the limiting
flame velocity. The obtalned result 1s used to analyze nonlinear effects.

However, the one-dimensional theory can not explain the influence of the
vessel diameter on the propagation velocity. A theory taking account of the
radial change in temperature is considered in the second part, and thils per-
mits the introduction of the concept of critical vessel diameter and the

obtalning of a dependence of the propagation velocity on the coefficient of
thermal diffusivity.

1, Let us consider a semi-bounded pipe in which there is a combustible
substance at the temperature 7T = O . A temperature T = T, 1s applled to
the end x = 0O at a certailn instant. Then, considering the temperature to
be constant at each cross section (one-dimensional theory), we have (assuming
F(T) = 8T)

2
=@ B Tl =0, Tly=T (1.1)
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Henceforth 1t 18 convenlent to consider the case when Tlx=o = To for
0<t<t, T|x=og=0(>1) Evidently this case is closer to the real
process of initiation of combustion.

Let us put I = uef!, then

du ou
—_— — n2 — T Bt
or = & g | = =0, U xeo = Toe®

The solution of this problem 1s written as [4)
t
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and hence B-1)
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Under the assumptions that T|x=o = To (O < s < to)v Tl x==0 =0 (t > to)y
we have from (1.2) for t > t,
to
T
T (z, t) = ——2 S
(x, &) =— Va

Considering : large and ¢

PR — a2
Vi —p® eXP a3 (t —n)
o Small, we may put ¢ — 7 = ¢ and

Toty & — o 1.3
T(z, t) ~—22% _— _ex (1.3)
(, ) 2a ¥=n Vi p 4a®t

Let us interpret the flame propagation as the advancement of a certain

constant temperature. Then we obtaln a relationshlp connecting x and ¢
xt, T &M exp — x?
2a V x Vi 4a%t

dt

= const
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It 1s easy to see that this equation has an asymptotlc solution of the
form z = 2a VB—t — Alnt + B (A, B = const)

as ¢ - o ,

Hence, for _
dr/dt =20 VP  ter t— oo

that 1s, for the limiting flame propagaﬁion velocity, the same value has been
obtained as in [2]. Ttherefore, taking account of the combustion has no
effect on the limiting flame propagation veloclty. This fact is easil:
explained physically. Heat from distantly removed points does not aff.ct
the propagation velocity, only the coefficient g and the heat transfer to
nearby polnts are of fundamental importance

[ *

ol T 0 T
Fig. 3 Fig. 4 Fig. 5

Now, let the function F(T) have the form shown in Fig.3 (tanqg,= B, ,
tan ag= By, By> a,). Then the velocity cf advancement of the constant tem-
perature T < T, should be calculated according to =2aVE;, and the
veloclity of the advancement of the constant temperature 7T > 7, wlll be equal
to mg——zaivfﬁz. Since the temperature at each point rises as ¢ increases
and the higher temperatures progress more rapidly than the low ones, the
higher temperatures will overtake the low. We have a situation analogous to
the situation of the formation of a shock with a quite definite front. Hence,
it shovid be considered that if the function pF(7) grows slowly, the flame
front will be greatly extended and when #(7) increases slowly for small T
and rapildly for large T , the flame 1s characterized by a quite definite
front. Purthermore, if the break point on the curve of ¥Flg.3 is located far
to the right and. 7, 1is significantly less than 7,, then the propagation
veloclty in short plpes doed not succeed in attalning the value w, . The
rerlod of achleving the temperature 7, in the flame may be called the perlod
of induction. If 7T, 1s small or 7, 1s close to T, , the perlod of induc=-
tion 1s slight. Evidently these conslderatlions may be extended to the case
of a function F(7) having more than one break pcint.

Now, 1f pF(7T) is a smooth curve such as 1s shown in Fig.4, then by using
a plecewlse linear approximation the preceding deductions may be extended to
this case also and it may be consldered that the propagation velocilty may be
calculated from Formula

= 22 VB, B = max F'(T) (1.4)
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If ='(T) increascs without limit, taking account of combustion then
becomes cssential. But the portion of the curve corresponding to values of
T for which combustion is essential, may be replaced by a tangent. Combin-
ing all the above, the following conclusion may be made: 1if #(7) has the

form shown 1n Flg.5, the flame propagation veloclty may be calculated by
using (1.4).

For strongly-explosive materials the value of max r’(T) 1s large, and
conscquently, the final propagation veloclity of the explosion process is
large. The veloclity may remain small during the period of induction.

2. The expounded one-dimensional theory does not clarify the essential
effect of the magnitude of the vessel diameter on the flame propagation
velocity ([5] and other papers) which 1is known from experiment. In order to
elucldate thils effect, let us conslder the linearized theory of flame propa-
gation in a semi-bounded cylinder taking into account the radial temperature
distrlbution. The Iimportance of taking account of radial heat propagation
in the study of flame propagation has been noted in the book [6] (p.554).

We have the problem

aT 0T 0T 1 oT
= (ot e T8
Tlimo=0, Tlrgp=0 T|ey="T, 2.1)

where # 1s the pipe radius.
We may also conslder a boundary condition of theg form (T;+ QT)R= o .

Agaln setting T = ueﬁﬂ we obtain

du g [ 0% 0%u 1 Ou
=G+t o)
U|it=p = 0, U|r—p =0, U| xmp = TP
Let u =X (x,t) p (r% then separating variables we obtain
d?p 1 dp
g T g TP =0, p|l—r=0 (2.2)
X g 102X

292 — — —Bt
W——-a azz_a}:X’ X|t:0—-0, X|x=0—-—ToeB (2.3)
The functions JI,(A,7) , where J,(x) 1s the zero order Bessel function
of the first kind and A, the roots of Equation 71,(AR) = 0 , are solutions
of (2.2). Solutions of (2.3) are
t

. __aT,  (exp[— et —1)] == g
An (.’IJ, t) - %a Vﬂ_ g V(T:'_'EF exp 4q? (l — 1;) T
Then
T(x,r,t)=¢eru(z,r,t)=
t
2T exp [(B — a%A?) (¢t — 1)] — 2
= 3 Auly (har) 5 VOrTOS T OXP Za g 4T
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where the 4, are calculated from the relationship
2 Ay (har) = 1
n

Evidently the term corresponding to n = 1 1s of fundamental value for
large r . Hence

zT,
eV
(M =Db/R)

exp [(B — o'\ (2 — 7)) —
V(T_I—T)i P i —m "

T (2, r, t)zAIIO (xlr) 2

Se_m

Here » 1is the first root of Equation 7r,(x) = O . As in Section 1,
let us consider that

Tlx:o =T0 Ot tO) T|x=o =0 (t>t0)
Then

T (z, r, %) = A, (r) ;:Of;,? exp (8 ;,“2“’” exp ST (2.4)

It hence follows that if f — g2A2<C 0, then T — 0 as ¢ 1increases,
i.e. in this case the process will not be propagated. If B — a®A,2> 0,
then as follows from Sectlion 1, the combustion process wlll be propagated

with the velocit
o — 2% VP—ahg (2.5)

Since \;= /R this means that the process will be damped for R < ablV'B
and the combustion process belng propagated at a veloclty w > 0 will be

initiated for R > ab/ VB

The maximum value of w as F Increases equals ZaVﬁ.

Let p(T) have the form shown in Fig.3; then if Ty < T, R < ab/Vph
the flame will not be propagated in the pipe. If Ty < T,, R, > ab/ VB,
the flame first starts to be propagated at the low velocity

(1)1 == 20’]/51 —_ avzhl2
then, when the temperature reaches the value T, , & sharp lncrease in the
flame velocity to the value

— 3 2
occurs, = 2a Vﬁz %M

Hence, the value R, = ab/ Vﬁl becomes critical: for R R, the
flame is not propagated; for R > R, the flame is propagated at high velo-
city. As has been remarked, if the period of induction 1s large, the flame
veloclty in short pipes will be low. If T,> T,, then a regime of propaga=
tlon corresponding to the slope g5 &t once occurs. Hence, 1t can happen
that if the dismeter 1s less than the critical (for a value By ), 1.e.

R < ab/ Vﬂl, but R > ab/ Vﬁa, then the combustion process does not
occur for T < T, but starts to be propagated at high velocity for To> Ty

Using reasoning analogous to that in Section 1, the case of a continuous
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change 1n the slope of the tangent and taking account of combustion may be
consldered. The conslderations expounded above may be used to elucidate the
phenomenon of the transition of combustion into detonation.

Furthermore, if R >R, = ab / P/SI, then as has been remarked above,
after a sufficient temperature has been achleved the flame starts to be pro-
pagated at a veloclty corresponding to the slope 92- As follows from (2.5),
the flame veloclty tends to the quantity Zal/ﬂg——-ﬂl. as R —»1?* The

maximum flame propagation velocity .y = 2a Vﬂz, and for R — R* , 1t
0, =22V, — B, =2aVB, V1 —B,/B,

o,/ Omax = V1 — B, /P, (2.6)

The dependence of the velocity w on the coefficient of thermal diffusi-
vity, constructed according to (2.5), 1s presented in Fig.6.

becomes

Hence

At the beginning, as a 1increases, the
) velocity w also 1ncreases to the maximum
value 8/\,, then decreases to zero. This fact
1s completely explainable physically since as
A a 1ncreases the quantity of heat being delilv-
]; ered through the plpe walls increases. The
double role of the heat conductlvity has been
o ncted in [7] (p. 288). It can turn out that

0 !E_ gg_ a taking account of the dependence of the flame
274 '

propagation veloclty on the coefficient of
thermal diffusivity will permit the elucidation
of some peculiarities in flame propagation.

Fig. 6

The coefficient of thermal diffusivity depends on the temperature, but
also changed durlng the reaction in connection with the change in the con~
centration of the reactling materials,

Let us assume that the coefficient of thermal diffuslvity depends on the
temperature by increasing as the latter does. Then rapld cooling through
the wall occurs on the portion where the temperature 1s high, the flame is
quenched on this portion. The layer lying in the forefront warms up slightly
during this time and starts to burn only after a certaln time (the period of
induction) has elapsed, etc. and pulsating combustion [5 and 7] occurs.

The author 1s grateful to S.V. Fal'kovich for useful discussions.
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